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wWe consider multi-stage processes involving both
zero—sum and non-zeroc sum games. Using the con-
cept of "games cf survival" we derive approximate
solutions fcr both classes of multi—stage games

under various realistic assumptions.
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$1. Introducticn

In the first paper of this series, [1], we consi{ierei . mult!
stage decision process of simple and yet general type and showel
that an approximate soiuticn of plausiole and lntultlve sort co..d

be obtained under certaln reascnable assumptions.

In tnis paper, we shall conslder a more diificult :luss of
problems, involving conflict between two groups. In many situatlcns
of importance, oune group may be considered to oe tne lnanimate

forces of nature.

» Summarized bty the phrase 'the perversity of inanimate co'e .8
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wWhen the two groups are in direct conflict we have the theory

Oof zero-sum games tyu assist us. Wnen tne two groups are partly
upposed and partly not, we encounter the problems of non-zero sum
games, where there 18 essentlaily nu theory to guide us. Never-
~neless, we shall sncw that under certain conditions we can once
2gein obtain approximate modes ¢f procedure which seem eminently

re:sonable.

52. Description of the Multli-Stage Pr.cess

We Bhall conslider a multi-stage jrccess of the following type,
whicn we 8rall cull a "yame". There are two protagonists, whom we
tnall call "players", named rather prosalcaily P and Q. Tne first
«{ these players, P, has a cholice of M different plays, which we
shall designate by the numbers 1,2,...,M, and the second player, Q,
nas a cholce of N ditferent plays, denoted by 1,2,...,N. If P chooses

the 1t“ o nis cnofces and Q the JED of nis choices, then P recelves

a Quantity a and Q a qiantity bi" These quantities may be nega-—

1!
tive, in wnich case a loes {8 sustained.

We can now consider tnis situaticn to repeat itseif fcr 4
finite _r unbounaed number ol stages and puse the problem of deter-
minin, tne ptimal mode of play for each player under the assumption

t'rat ench wishes to maximize his over~all return.

$3. er.-Sur Games - Single Cltage

Tie simpliest case, and unfortunately tnhe cnly case In which

a Buliglact.ry tneory exists, 18 that where bi’ = —aij' whicr. 1s
(V]
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to say the players are in direct opposition since vne's galn {s

the other's ioss.

wWe shall begin with the discussion ¢f the single-stage process.
It 1s clear that the determination of optimal play 1s trivial {f
either of the players is required tc move befure tne _ther. The
only interesting case 1is that where both players are required to

move simultaneously.

In these circumstances they prctect themselves by mixing

their choices. Les us assume then that P chocuses tie 1Eﬁ play

with probability x, and Q his J&! choice with probability vy

The vector x = (x,xa....,xn) specifies P's probabtlity distribu—

tion, and y = (y,,y.,...,yn) specifies Q's probabtliity distribution.

The expected return for P will be
N
(1) EP(XDY) - ; 31inyj ’
yJ=1
and the expected return for Q, EQ(x,y) wiil be tne negative of this,

(2) EQ(X.y) = —Ep(x,y)

The first player, P, will choose hils probability distribution

X 80 as toc maximize EP anJd the secord player Q wil.l Cnoose y 80 as

to minimize EP'

We can then define two values

(3) VP = Min Max Ep(x.y)
y X
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and
4 = M )
(4) Vq = Myx M&n E,(x,y)
In each cese the varlaticn 18 (ver the regicns defired by

M
(5) (a) x,>0, %1 x, = 1,
N

(b) y 420, 2;1 yy= 1.

J

Tne first value, VP’ 18 the expected return to P 1 Q {8 required
to chcose y before P chooses x, and the secuond {s thne expected

return to P If P must choose x bef .re Q chooses y.

It 1s a4 remarkable fact, the celebrated min-max tnecrem of

Von Neumann, (4], the basic tneorem «f the theory of games, that

The Interjretation of this result 18 that P can anncunce x in
advance, and Q ilkewise, withcut either galning from this advance

knuwledge.

$4. Zero-Sum Games — Finite Resources

In many sltuations, involving multi-stage play, the above
moiel 18 not satisfactory. This is particularly true in multl-
stage prccesses where bLotn slaes have fin!lte rescurces. Here the

game autumatlicaily terminates when eitner player has nc resources.

Let us assume then that each side now piays to ruin the other,
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with the game continuing unt!l cne or the cther player {8 bank-
rupt. Let p represent tne initial amount p.ssessed by P and q the

inltial amcunt pcssessed by Q. We define

(1) f(p,q) = the prcbabllity that P survives Q ~nen P starts with

p, Q with q and bcth sides use optimal play.

Gumes of tnls varlety are aptly calles "games of survival , cf' 2,
SR
55. Games u! Survival - Matnematicual Formuaiation

Since P winsg what Q luses, and vice versa, the total qu.antity
of resvurces in the game remains cons ant, and equal to p. + q. = N,
the initial total, to specify the state (f the game {t {8 sufficlent

then to state tne amount of resources p.ossessed by .

we replace !'(p,q) by the function f one variavie {(p). Let
ug now derive a functional equution tcr t(p). Enuwnerating the

possible nutcumes uf one stage c! play, we see that

[ %4

N
(1) ¢{p) = ;i xiy,f(p‘ql,) ,
: yJ=1 v

where x = (x,,x,,...,xH) and y = (y.,y,.....yN) are the ;rcbability

distributions of P and Q determining the initlal play.

5ince P plays to maximize f(p) and Q tu minimize r(p), we

obtalin the equeati.n

N

(2) t(p) = ‘;x M;n ?Lﬁ-l xiyJI(;«aij)

N
= Min Max X,y f(p*ui.)
17 J

y X s J=1
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This equation 15 valid for O(p<N. We ulso have

(3) f(p) =1, p >N
flp) =0, p <0
Sh. Appn,ximaig Solution

A solution of (2) yilelds f(p) and thus the vector x(p), y(p),
the probavility distributions determining the initial play. We
witn to determine approximate vilues Cor x(p) and y(p) under cer-

taln assumptions c.ncerning the sequence of pay—ffs, (aij)'

We assume that no single play creates any appreciable change
in the astate of the game, which 18 to say that aiJ is small com-

pared to p.
wWe then write
4 = 3 . M |
(1) r(p*di‘}) l(‘) *di‘jx (p)'

Then (£.2) takes the form

M,N
(2) £{p) ¥ Max Min [ x,y, (f(p) + a, 0" (p)) ]
. XY 1)
X y yJ=i
M.N

n

Min Max [ X,y (f(p) +u, 0 (p)) o
LA | 1 J 1\]
y X yusi

or
_ M, N
(3) O Y Max Min _{'(p) a, X ¥, J
1717y
X y yJ=1
M,N

S Min Mux [I"(p} %_ ag %Yy <
Yy X v.].l
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Let us nuw assume furtaer that, as 18 trie 'n all reailst'c sltua—
tions, 1t definitely pays P to have a larger initlal quantity of

resources, that 1s to say f'(p) > O for all p.

Tnen (3) is replaced by

M,N
4) O ¥ Max Min | a, X N
: X y L?_._E-l 1 1yJJ
M, N

[ W]

¥ Min Max C; a, X,y
y X , -1 1J 1 J

Tne meaning of this equiaticn 1s that for large p, with a
large number of plays remalining until the end ¢l the game, the play
is approximately the same as that employed in tr: single-stage pro-—-
cess where both players wish merely t. maximize the expected return

from one play.

This approximate solution has precisely the same structure

as that given fcr the one—person process in (i .

The impcrtant feature of (<) 1s that we obtaln the same
approximate equaticn regardless of tne signifllcance cf r(p). Ccn-
sequently, even in situations where f(p) 18 not completely deter-

mined, as !requently occurs !{n reallstic sftunticns, we knuw Lhat

we possess ua goud approximation to optimal pliay.

$7. Non—lero Sum G mes — Games of Survival

Let us now turn to a alscussion of the more general situation
where bi' r oYy Here there 18 no theory for tne determlnaticn
3 J

of optimnl play in - single-stage process. C.nsequently, we shall
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turn immediately to the discussion of multi-stage processes. We
assume once more that both players strive to ruln the other and

continue the game until tnis occurs.

Let. p be tne initial amount possessed by P and q the amount

possessed by Q, and introduce the function defined by (4.1).

This function satisfles the functional equation

(1) (a) f(p,q) = Max Min ng xier(p tag, et biJ)
X y yJ=1
M,N
—~ M;n Mix . xlny(p + a3y, Q¢ biJ)' P,qd>0,
(o) f(p,q) = 1, p >0, q <O
- o, p <O, qQq>0
= 1,2, p=q=0 .

S5, Approximate Solution

Let us assume that aiJ and biJ are both negative, 8o that
we are dealing with an attrition process, and that a1J and b1J are

small compared to p and q.

we write

(1) f(P+a1J, q+biJ) = f(p,q) + aipr + biJrq

Then (7.1a) ylelds
M,N

N -
2) O ¥ Max Min | [ a, Xy, + f YRR AN
( X oy . pg:.d-l Sl i q?—-’J_.‘ e

N N -
4 T Min Max [x‘p ?’_’le ayyxyyy + fq F,J-l by yXq4¥y o

y X
i \\.




B=557
~G—

As befcre we assume that [ c, r 0. )
. > q < Since X aijxiyJ’

b3 biniyJ are both negetive, (2) ylelds

(3) ¢ M,N _
Tﬁ = Max Min ?:J by Xy¥, / ?;J=1 ay Xy ¥y J
y yJ=1 , J=1

The interpretation of this equation 18 that b. th sides play

approximately so as to maximize or minimize respectiveliy the ratio

M,N M,N
(“) R(xry) = ?’J-l biniyJ / EJ:I aijxiyJ

That, under che assumptions on a1J and biJ’

(5) Max Min R(x,y) = Min Max R(x,y)
X |y y x

i8 a thecrem also due to Von Neumann, and recently established {n

a different manner by Shupley, 5.

$9. A Raticnale fcr Non-Zerc Sum Games

The importance cf the above resu.t resides {in the fact tiat
it furnisnes us a motive for using R(x,y) as a unlversal pay-off

function for non-zeroc sum games. whether or not {t is to be

accepted in any particular situati.n w~11ll depeni on ovther proper-

ties of the game,
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